Skip to content Skip to sidebar Skip to footer

Easy Way to Convert Decimal to Hexadecimal

The number system is the system of representing numbers. There are different types of representations in the number system. They are Binary (Base – 2), Decimal (Base – 10), Octal (Base – 8), and Hexadecimal (Base – 16).

Decimal to hexadecimal conversion is the process of converting a decimal number to a hexadecimal number. The decimal number has a base value of 10 (0 to 9) and the hexadecimal has a base value of 16 (0 to 9 and A to F for 10-15).

The following table shows the representation of Hexadecimal, decimal and binary values:

Hexadecimal Digit Decimal Digit Binary Form
             0           0      0000
             1           1      0001
             2           2      0010
             3           3      0011
             4           4      0100
             5           5      0101
             6           6      0110
             7           7      0111
             8           8      1000
             9           9      1001
             A          10      1010
             B          11      1011
             C          12      1100
             D          13      1101
             E          14      1110
             F          15      1111

There are different ways to convert Decimal to Hexadecimal numbers. They are as follows:

Converting Numbers with the Integer part

Step 1: Take the decimal number as dividend and 16 as the divisor (hexadecimal number will have 16 as a base)

Step 2: Divide the dividend with the divisor and store the remainder in an array

Step 3: Now divide the quotient obtained from the above step by 16 and store the remainder in the array.

Step 4: Repeat the third step until the number is greater than zero.

Step 5: The final hexadecimal value will be the reverse order of the array.

Example 1: Let's consider a decimal number 450. We need to convert this decimal number to a hexadecimal number.

Solution:

Given: Decimal number = 450(10)

Step 1: 450/16 gives Q1 = 28 and R1 = 2

Step 2: 28/16 gives Q2 = 1 and R2 = 12 = C

Step 3: 1/16 gives Q3 =  0 and R3 = 1

Step 4: 0/16 gives Q4 =  0 and R4 = 0

Therefore, the hexadecimal value is 01C2(16)

Example 2: Convert 6096(10) to ________(16)

Solution:

Given: Decimal number = 6096(10)

Step 1: 6096/16 gives Q1 = 381 and R1 = 0

Step 2: 381/16 gives Q2 = 23 and R2 = 13 = D

Step 3: 23/16 gives Q3 =  1 and R3 = 7

Step 4: 1/16 gives Q4 =  0 and R4 = 1

Step 5: 0/16 gives Q5 =  0 and R5 = 0

Therefore, the hexadecimal value is 017D0(16) or 17D0(16)

Converting Numbers with Fractional parts

Step 1: Take the decimal fractional number and multiply it with 16 (hexadecimal number will have 16 as a base)

Step 2: Store the remainder in an array i.e. the integer part

Step 3: Repeat the above two steps until the number is zero.

Step 4: The final hexadecimal value will be the elements of the array.

Example 1: Convert 0.0568(10) to _______(16)

Solution:

Given: Decimal number = 6096(10)

Step 1: 0.0645 x 16 = 1.032 and R1 = 1

Step 2: 0.032 x 16 = 0.512 and R2 = 0

Step 3: 0.512 x 16 = 8.192 and R3 = 8

Step 4: 0.192 x 16 = 3.072 and R3 = 3

Step 5: 0.072 x 16 = 1.152 and R3 = 1

The fractional part is still not zero so it continues, now we can take up to 5 remainders

Therefore, the hexadecimal value is 0.10831…(16)

Converting Numbers with Both Integer and Fractional parts

Steps of both the integer part and fractional part are to be followed.

Example 1: Convert 256.00390625(10) to _________(16)

Solution:

 Given: Decimal number = 256.00390625(10)

Let's perform the conversion on integer part:

Integer value = 256(10)

Step 1: 256/16 gives Q1 = 16 and R1 = 0

Step 2: 16/16 gives Q2 = 1 and R2 = 0

Step 3: 1/16 gives Q3 =  0 and R3 = 1

Let's perform the conversion on fractional part:

Fractional value = 0.00390625(10)

Step 1: 0.00390625 x 16 = 0.0625 and R1 = 0

Step 2: 0.0625 x 16 = 1.0 and R2 = 1

Step 3: 0.0 x 16 = 0 and R3 = 0

Therefore, the hexadecimal value is 100.010(16)

Indirect Conversion

In this type of conversion, we will convert the decimal number to a binary number or octal number and further convert it to a hexadecimal number by grouping digits.

Example 1: Convert 66(10) to _______(16)

Solution:

Given: Decimal Number =  345(10)

Convert the given decimal number to its binary form:

Binary Number = 1000010(2)

Now, Group 4 binary digits as one group and write its hexadecimal value

i.e. 0100 0010

Therefore, Hexadecimal Number =  42(16)

crinerhistink69.blogspot.com

Source: https://www.geeksforgeeks.org/how-to-convert-decimal-to-hexadecimal/

Post a Comment for "Easy Way to Convert Decimal to Hexadecimal"